Pokaż wyniki od 1 do 13 z 13
Like Tree5Likes
  • 1 Post By saturn5
  • 1 Post By N077GL
  • 1 Post By Air Q
  • 1 Post By N077GL
  • 1 Post By alien

Wątek: Obliczanie trajektorii i zasięgu rakiet

  1. #1

    Dołączył
    Mar 2011

    Domyślnie Obliczanie trajektorii i zasięgu rakiet


    Polecamy

    Hey!

    Umieszczam temat w tym dziale, bo mimo iż forum ma niewiele wspólnego z pociskami/rakietami balistycznymi, to ten wydaje się być najbardziej odpowiedni...

    A więc, w internecie jest taki filmik :


    Najważniejsze fakty :
    - rakieta wystrzelona przez Armadillo Aerospace,
    - osiąga pułap ~ 42 km,
    - udaje się wszystko nagrać .

    Moje pytanie brzmi, jak obliczyć teoretyczny zasięg takiego pocisku ? O ile możemy zakładać pewne wartości, jak prędkość oraz masa, o tyle warunki aerodynamiczne czy związane z budową konstrukcji ograniczenia, z wiadomych powodów musimy pominąć, tudzież założyć jak dla typowego pocisku (?) o podobnych wymiarach...

    Jednak zasadnicze pytanie brzmi, co z tym zrobić ? Nie wydaje mi się, abym na fizyce miał lekcje o wystrzeliwaniu rakiet w kosmos, dlatego z pytaniem zwracam się do Was. Jeżeli ktoś potrafi wszystko to obliczyć, genialnie by było gdyby przedstawił wszystko krok po kroku .

    Choć dobrze by też było poznać mniej-naukowe opinie na temat potencjalnych możliwości takich pół-amatorskich "modeli". Interesuje mnie najbardziej zasięg, oraz wykrywalność - a raczej co się wiąże z wystrzeleniem takiego pocisku w powietrze ? Dajmy na to, że odpalam sobie podobny "model" w ogródku, jakie są wskazania radarów ? Czy satelity wartują, a tarcze antyrakietowe przełączają się w tryby gotowości ? Czy tylko przyjeżdża ktoś z policji/wojska i wlepia mi mandat za naruszenie wszelkich możliwych stref powietrznych ?

    Pozdrawiam .
    Ostatnio edytowane przez Gabec ; 12-01-2012 o 22:53 Powód: "i"

  2. #2
    Awatar saturn5

    Dołączył
    Apr 2007
    Mieszka w
    Taurus-Littrow

    Domyślnie

    Do obliczania zasiegu musisz znac wiele parametrow ktorych tutaj nie masz:

    1. trajektorie rakiety do momentu zgasniecia silnika a wiec jak jest sterowana, jakie sa predkosci poziome, pionowe w kazdej fazie (czy rakieta leci prosto w gore czy zagina tor a jak tak to jak, itp) - to bedzie mialo kolosalny wplyw na zasieg. Tylko wytworca rakiety moze ci udzielic tych danych.
    2. potem przychodzi sam lot balistyczny i tu juz mozna wiele rzeczy oszacowac jak wspolczynniki oporu
    3. wplyw atmosfery i wiatrow jest bardzo istotny

    W sumie musisz wiedziec duzo wiecej niz te 42 km i miec filmik. Fizyka jest tu calkiem zlozona, duzo skomlikowanych obliczen ktore najlepiej na komputerze zrobic, chyba ze chcesz tylko zgrubsze oszacowanie (ze wzgledu na brak danych z 1. nawet oszacowac tu nie mozna).
    A na wystrzal czegos takiego to oczywiscie trzeba miec pozwolenie, chociazby z lokalnego ATC (zycze powodzenia na uzyskanie pozwolenia gdziekolwiek w Europie!!). Na szczescie ci ludzie robia to w NM w wydzielonej przestrzeni R-5111, tam jest mnostwo miejsca i ze wzgledu ze maja ta przestrzen do swojej dyspozycji nie musza nikogo prosic o zezwolenie. Tam tez Virgin Galactic planuje swoje loty w "kosmos".
    Ostatnio edytowane przez saturn5 ; 30-12-2011 o 00:06
    NeXuS2.0 likes this.

  3. #3

    Dołączył
    Jan 2009
    Mieszka w
    KPRB

    Domyślnie

    Oczywiscie im zalezy na locie jak najwyzej do gory a nie w bok. Chca tez pewnie aby im calosc spadla niedaleko od wyrzutni - i wygodnie i w ten sposob latwo sie mieszcza w przestrzeni R-5111 (Spaceport America) ktora dysponuja i z ktorej legalnie pewnie im nie wolno wyjsc.

    Ale jesli pytasz jaki teoretyczny zasieg moznaby z takiej rakiety otrzymac gdyby skierowac energie zawarta w paliwie na lot maksymalizujacy zasieg to niestety atmosfera ziemska bardzo komplikuje obliczenia. Jesli obecnie osiagaja wysokosc 42 km, powiedzmy ze gdyby nie bylo powietrza osiagneliby te 50 km, z prostych wzorow Newtona mozna pokazac ze w takim razie mogliby uzyskac teoretyczny zasieg 100 km ale to znowu bez powietrza, z obecnoscia atmosfery bedzie to pewnie tak na oko 70-80 km.
    NeXuS2.0 likes this.

  4. #4
    Awatar Air Q

    Dołączył
    Feb 2007
    Mieszka w
    ...

    Domyślnie

    Cytat Zamieszczone przez NeXuS2.0 Zobacz posta
    Jednak zasadnicze pytanie brzmi, co z tym zrobić ? Nie wydaje mi się, abym na fizyce miał lekcje o wystrzeliwaniu rakiet w kosmos, dlatego z pytaniem zwracam się do Was. Jeżeli ktoś potrafi wszystko to obliczyć, genialnie by było gdyby przedstawił wszystko krok po kroku .
    Bo w szkołach nie uczą niestety jak symulować nawet proste zjawiska fizyczne przy pomocy metod komputerowych. Jeśli ten temat Cię interesuje to warto poznać jak można numerycznie rozwiązywać równania ruchu, bo nie wszystko w fizyce da się obliczyć metodami analitycznymi. Zobacz prosty przykład obliczenia spadku swobodnego bez oporów powietrza:
    Integration Basics

    Ciekawą pozycją jest też książka:
    "Symulacje komputerowe w fizyce" - Książka, kurs - Maciej Matyka - Wydawnictwo Helion, księgarnia internetowa informatyczna helion.pl

    Z kolei w książce "Feynman Lectures on physics vol1" jest poniższy rozdział:
    http://www.cc.uoa.gr/~pji/mech1/READ...20Dynamics.pdf
    w którym autor podał przykład numerycznego obliczania orbit planet (str 6).
    NeXuS2.0 likes this.

  5. #5

    Dołączył
    Jan 2009
    Mieszka w
    KPRB

    Domyślnie

    Dokladnie jak AirQ pisze.
    W szkole cie moze naucza o prawach Newtona, prawie grawitacji i pokaza jak to zastsowac do najprostszych przypadkow ale zeby ci pokazac jak to uzyc aby powiedzmy obliczyc trajektorie sondy z Ziemi na Marsa to juz nie.
    NeXuS2.0 likes this.

  6. #6
    Awatar saturn5

    Dołączył
    Apr 2007
    Mieszka w
    Taurus-Littrow

    Domyślnie

    Jak mowa o szkole to pamietam nastepujace b. ciekawe zadanie z grawitacji na lekcji fizyki w szkole licealnej. Zadanie bylo zarezerwowane dla tych 'najlepszych'.

    W celu uzyskania prostego systemu transportu na Ziemi wiercimy prosty tunel z Warszawy do Paryza przez ktory metoda grawitacji mozemy wpuszczac duzy cylindryczny pojemnik (z ladunkami, ludzmi, itp.). Wiercimy nastepny taki tunel z Warszawy powiedzmy do Sydney. Zakladamy przypadek idealny ze nie ma tarcia i w tunelu jest proznia. Pokazac:

    1. ze czas podrozy takiego pojemnika bedzie taki sam bez wzgledu do jakiego miasta ten tunel prowadzi.
    2. obliczyc ten czas.

    (metody numeryczne niepotrzebne)
    Ostatnio edytowane przez saturn5 ; 31-12-2011 o 20:08

  7. #7
    Awatar kirby

    Dołączył
    Feb 2007
    Mieszka w
    Pl

    Domyślnie

    Ponieważ ruch jest harmoniczny. Cięciwa ziemi (długość tunelu) jest odwrotnie proporcjonalna do składowej siły grawitacji działającej na pojemnik wzdłuż tunelu Jeśli skracamy cięciwę ziemi zmniejszamy tym samym składową przyspieszenia grawitacyjnego działającą na ciało wzdłuż tunelu, jeżeli wydłużamy cięciwę do maksymalnej (średnicy) jest odwrotnie - a czas przelotu nie zmienia się. Trzeba by odszukać wzory na okres drgań, może ktoś to policzy

  8. #8

    Dołączył
    Mar 2011

    Domyślnie

    Ciekawy fakt - należny również uwzględnić ruch obrotowy ziemi.

    Dajmy na to samochód poruszający się z punktu A do punktu B po drodze - nie robi na nim wrażenia prędkość, z jaką kręci się nasza niebieska kulka ( ponad 1 000 km/h), bo porusza się wraz z nią.
    Obiekt oderwany od powierzchni na kilka minut przemieści się geograficznie. Ma to wpływ już nawet dla snajpera, strzelającego na dystansie ~ 1,5 km, bo przy czasie lotu kuli 6-8 sekund, ziemia przemieści się względem pocisku.

    Bardziej fachowo opisał to Gaspard-Gustave Coriolis, Efekt Coriolisa .

    Niemniej jednak nie ma to raczej znaczącego wpływu na zasięg, a precyzyjne wycelowanie pocisku.

    Choć z drugiej strony, sądzę że nowoczesne, nakierowywane pociski/rakiety nigdy nie są naprowadzane precyzyjnie nad cel, dopiero w ostatniej fazie lotu same "ustawiają się" do trafienia.

  9. #9
    Awatar kirby

    Dołączył
    Feb 2007
    Mieszka w
    Pl

    Domyślnie

    Cytat Zamieszczone przez kirby Zobacz posta
    Cięciwa ziemi (długość tunelu) jest odwrotnie proporcjonalna do składowej siły grawitacji (...)
    Ma być - proporcjonalna - przed północą pisałem...

  10. #10
    Awatar saturn5

    Dołączył
    Apr 2007
    Mieszka w
    Taurus-Littrow

    Domyślnie

    Cytat Zamieszczone przez kirby Zobacz posta
    Trzeba by odszukać wzory na okres drgań, może ktoś to policzy
    odpowiedz jest 42 minuty.

  11. #11

    Dołączył
    Jun 2009
    Mieszka w
    Warszawa

    Domyślnie

    Cytat Zamieszczone przez kirby Zobacz posta
    Ponieważ ruch jest harmoniczny. Cięciwa ziemi (długość tunelu) jest odwrotnie proporcjonalna do składowej siły grawitacji działającej na pojemnik wzdłuż tunelu Jeśli skracamy cięciwę ziemi zmniejszamy tym samym składową przyspieszenia grawitacyjnego działającą na ciało wzdłuż tunelu, jeżeli wydłużamy cięciwę do maksymalnej (średnicy) jest odwrotnie - a czas przelotu nie zmienia się. Trzeba by odszukać wzory na okres drgań, może ktoś to policzy
    Jest to dokładnie taki sam przypadek jak lot po orbicie - to jest złożenie dwóch drag harmoniczych. Ponieważ na niskiej orbicie okres obiegu Ziemii to ok godzina, to pewnie połowa tego to wynik zadania.

  12. #12
    Awatar saturn5

    Dołączył
    Apr 2007
    Mieszka w
    Taurus-Littrow

    Domyślnie

    Cytat Zamieszczone przez dromader Zobacz posta
    to pewnie połowa tego to wynik zadania.
    polowa to oczywiscie nie jest choc nie jest daleko.
    pojemnik przechodzacy przez Ziemie podlega coraz mniejszym silom grawitacyjnym jak jest wewnatrz bo tylko czesc Ziemi na niego odzialowuje.

  13. #13
    Awatar alien

    Dołączył
    Oct 2008
    Mieszka w
    3M

    Domyślnie


    Polecamy

    Cytat Zamieszczone przez NeXuS2.0 Zobacz posta
    Ciekawy fakt - należny również uwzględnić ruch obrotowy ziemi. etc.
    Katalog upraszczających założeń, które należałoby przyjąć, aby linią geodezyjną (rzutem na powierzchnię planety) toru rakiety balistycznej była ortodroma, czyli dałoby się w miarę sprawnie liczyć tor "na piechotę", metodami trygonometrii sferycznej:

    Jeżeli przyjmiemy, że gęstość Ziemi i rakiety balistycznej są jedorodne i że masa Ziemi, uważanej za kulę, skoncentrowana jest w jej środku, a rakieta balistyczna może być traktowana jako punkt materialny, poza tym zaś jeżeli nie będziemy uwzględniać ruchu obrotowego Ziemi zachodzącego podczas przelotu rakiety oraz oddziaływania atmosfery na jej przelot, to ruch rakiety będzie miał charakter centralny, tzn. bedzie on odbywał się w stałej płaszczyźnie przechodzącej przez środek Ziemi. Linia przenikania tej płaszczyzny z kulistą powierzchnią Ziemi jest łukiem wielkiego koła.
    Wyliczanka pochodzi z antycznego sowieckiego poradnika dla pilotów i nawigatorów (wyd. pol. 1966), są to uwagi do prezentowanej metody obliczania współrzędnych punktów pośrednich ortodromy.
    NeXuS2.0 likes this.
    For every solution there is a problem.


Uprawnienia umieszczania postów

  • Nie możesz zakładać nowych tematów
  • Nie możesz pisać wiadomości
  • Nie możesz dodawać załączników
  • Nie możesz edytować swoich postów
  •